Maximizing Welfare and Performance Through Better Barn Design

J. Dairy Sci. 99:1-9
http://dx.doi.org/10.3168/jds.2015-9925
© American Dairy Science Association ${ }^{\circledR}$, 2016.

Imagining the ideal dairy farm

Clarissa S. Cardoso,* \dagger Maria José Hötzel, \dagger Daniel M. Weary,* Jesse A. Robbins,* and Marina A. G. von Keyserlingk*1
*Animal Welfare Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, V6T 1Z4, Canada \dagger Laboratório de Etologia Aplicada e Bem-Estar Animal, Departamento de Zootecnia e Desenvolvimento Rural, Universidade Federal de Santa Catarina, Florianópolis, 88.034-001, Brazil

- Humane treatment of cows
- Space to roam - pasture based production
- Fed grass with no unnatural use of steroids, antibiotics or hormones
- Profitable, productive and efficient....and organic
-Eco-friendly and sustainable

Wisconsin Milk Cows

Wisconsin Milk (lb) Per Cow

Wisconsin Average Herd Size

Wisconsin \# Dairy Herds

Note: Lloensed herd data only avallable from 1993.
Data prior to August 2003 Includes a small number of goat and sheep dalry herds.

The Wisconsin Dairy Industry

- 77% of WI dairy cows are housed in freestalls

Disconnect between consumer preferences and producer actions

Welcome

To navigate the site, please click the tabs at the top of the page

Dairyland Initiative
UNIVERSITY OF WISCONSIN-MADISON

In the News

Register today for The Dairyland Initiative Workshops Nov. 12, 13
\& 14 in La Crosse, WI!

Summer Newsletter

UW-Madison News
Grant Generates Increased Access, Network Training to

Dairyland Initiative

Hoard's Dairyman Series:

1. What Every Transition Cow Barn Needs
2. Solve your Transition Housing
 \title{
The Wisconsin Blueprint
 \title{
The Wisconsin Blueprint Guiding Principles
}

- Provide a comfortable place to rest that is designed to meet the space requirement of the animal, and not inhibit rising or lying movements.
- Provide enough feed and water space for each animal to optimize health.
- Wherever possible, provide exposure to natural light and ventilation, but utilize mechanical assistance when needed.
- Accommodate cows and calves in groups which are socially stable over time, and manage groups to minimize movements between them.
- Design barn layouts that do not result in undue time away from a place to eat and rest.
- Design facilities to reduce the risk for spread of disease between neighbors.

The Question.

Can we build and manage

 confinement housed freestall systems that achieve high performance and excellent well-being?J. Dairy Sci. 98:3059-3070
http://dx.doi.org/10.3168/jds.2014-8369
© American Dairy Science Association ${ }^{\oplus}, 2015$.
Cluster analysis of Dairy Herd Improvement data to discover trends in performance characteristics in large Upper Midwest dairy herds
R. L. Brotzman, N. B. Cook, K. Nordlund, T. B. Bennett, A. Gomez Rivas, and D. Döpfer ${ }^{1}$

School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison 53706

- AgSource Cooperative Services DHIA served herds, from 3,078 herds in Upper Midwest with complete data, sorted 557 herds >200 cows likely to be freestall housed
- Principal component analysis found 16 DHIA variables that best explained differences between herds and performed cluster analysis
- Herds grouped into one of 6 clusters

Cluster Group DHIA Characteristics

 Color variation (generally) represents "best" to "worst"| DHI Variable | Group 1
 $(\mathrm{n}=171)$ | Group 2
 $(\mathrm{n}=86)$ | Group 3
 $(\mathrm{n}=97)$ | Group 4
 $(\mathrm{n}=67)$ | Group 5
 $(\mathrm{n}=62)$ | Group 6
 $(\mathrm{n}=74)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Herd size, cows, lowest - highest | 493^{b} | 270^{e} | 365^{cd} | $270^{\text {de }}$ | 403^{bc} | 1097^{a} |
| Milking freq., lowest - highest | 3.0^{a} | 2.0^{d} | 2.9^{a} | 2.2^{c} | 2.8^{b} | 3.0^{a} |
| \% 1 $^{\text {st }}$ Lactation, lowest - highest | 38.4^{b} | 38.1^{b} | 38.6^{b} | 38.0^{b} | 37.8^{b} | 43.8^{a} |
| Energy Corrected Milk, kg | 41.7^{a} | 39.4^{b} | 40.0^{ab} | 33.9^{d} | 36.9^{c} | 40.2^{ab} |
| Days In Milk | 182.9^{c} | 179.7^{c} | 195.5^{a} | 189.1^{b} | 192.5^{ab} | 181.8^{c} |
| Days Dry | 59.4^{ab} | 59.4^{ab} | 54.7^{c} | 60.7^{a} | 60.8^{a} | 57.0^{bc} |
| Age at 1 ${ }^{\text {st }}$ Calving | 24.1^{d} | 24.5^{dc} | 25.3^{ab} | 25.6^{a} | 24.9^{bc} | 23.4^{e} |
| Transition Cow Index, kg | 207.8^{a} | 236.1^{a} | -10.9^{b} | -171.8^{c} | -212.9^{c} | -13.9^{b} |
| Milk Peak Ratio | 74.4^{c} | 74.1^{c} | 77.8^{a} | 77.6^{a} | 76.4^{ab} | 74.9^{bc} |
| Linear Somatic Cell Score | 2.2^{d} | 2.3^{d} | 2.6^{c} | 3.0^{a} | 2.8^{b} | 2.7^{c} |
| \% New Udder Infections | 8.7^{c} | 8.9^{c} | 11.9^{b} | 14.7^{a} | 13.9^{a} | 12.6^{b} |
| \% Udder Infections 1 1t test | 11.0^{e} | 13.7^{d} | 15.7^{c} | 19.9^{a} | 17.8^{b} | 14.5^{cd} |
| \% Dry Period Infection Cures | 75.5^{a} | 66.4^{b} | 63.9^{b} | 56.5^{c} | 63.7^{b} | 71.5^{a} |
| \% Culled, Non-dairy, lowest - highest | 33.5^{b} | 36.1^{b} | 35.9^{b} | 32.6^{b} | 40.0^{a} | 43.0^{a} |
| \% Cows Died | $5.7^{\text {cd }}$ | 5.7^{cd} | 6.3^{bc} | 4.9^{d} | 12.4^{a} | 7.6^{b} |
| \% Cows Died by 60 DIM | $2.3^{\text {bc }}$ | 2.7^{b} | 2.4^{bc} | 1.8^{c} | 5.7^{a} | 2.7^{b} |

Survey of facility and management characteristics of large, Upper Midwest dairy herds clustered by Dairy Herd Improvement records
R. L. Brotzman, D. Döpfer, M. R. Foy, J. P. Hess, K. V. Nordlund, T. B. Bennett, and N. B. Cook ${ }^{1}$

School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison 53706

- Herds grouped into one of 6 clusters
- Telephone survey all 557 herds (201 responses) - facility and management
- Visited 22 herds in each of clusters 1, 2 and 6 (66 total) physical well-being

Cluster Group Survey Questions

	(1)	-				mop	ALL
Characteristic	1	2	3	4	5	6	
Energy Corrected Milk (lb per cow)	42	40	40	34	37	40	
\% sand	68	61	63	65	52	69	64
\% mattress	29	36	37	35	39	22	32
\% 2-row pens	48	70	56	26	45	38	48
\% headlocks	73	67	74	70	56	75	70
\% feeding 2 dry cow rations	70	55	52	48	61	78	63
\% just-in-time calving	57	39	48	43	35	88	54
\% dedicated 1st lactation heifer pen	84	48	74	61	70	97	75
\% use custom heifer rearer	49	24	30	13	30	78	41
\% trim cows at least $2 \times$ per lactatior	68	33	44	30	52	53	50
\% trim heifers before calving	51	30	33	17	30	53	39
$\%$ using a synch program 1st breeding	87	61	59	39	69	94	73
\% rBST	73	33	70	26	61	84	61
\% Monensin	89	78	78	64	91	84	82
\# cows per FTE	48	55	48	56	48	63	50
$\mathrm{N}=$	63	33	27	23	23	32	201

Physical Well-being

Visited 22 herds in each of clusters 1, 2 and 6 - 'Elite' group of 66 herds

Lameness In 87 Finnish Dairy Herds

(Sarjokari et al., Livestock Science 156:44, 2013)

- Mean herd size 49 cows, production 8,984 kg
- Freestall housed, traditional milking parlors
- 23% herd lame on average, but lower if:
- Divided feed barrier vs post and rail
- Wider feed alleys
- Alleys less slippery
- Cleaner alleys
- Softer stalls
- Correctly located neck and front rails

Multi-variate Model: Lameness

- Mixed Model to explain clinical lameness using 27 variables after univariate screening at $\mathrm{P}>0.2$, with group as a random effect
- Significant factors at $\mathrm{P}<0.05$ in final model:
- Stall Surface (deep bed 7.2% vs. mat 14.1\%)
- Pasture Access (yes 5.9% vs. no 15.4\%)
- Cows per FTE (benefit of fewer cows per FTE)

22 herds in each of clusters 1, 2 and 6 - 'Elite' group of 66 herds

Topics

- Stalls

-Floors

- Transition
- Cooling and

Ventilation

Topics

- Stalls

Dairyland Initiative

Sand promotes fewer, longer lying bouts

Sand promotes normalized resting behavior

Change in Hoof Lesion Score (0-8) after 21 weeks on either sand or straw bedded freestalls

Norring et al., J Dairy Sci 91:570, 2008

Bed Surfaces and Lying Time

 (Solano et al., 2015141 farms in Alberta, Ontario and Quebec)

Lying Times and Surface Types

Wisconsin Dairy Industry - Bedding!

	Inorganic (Sand)	Manure Solids	Organic
$\mathrm{N}=$	$156(60 \%)$	$29(9 \%)$	$62(19 \%)$
RHA Milk kg (lb)	12,870 $(28,314)$	11,779 $(25,913)$	12,025 $(26,455)$
SCC ('000/ml)	198	248	220

The Sand/Mattress Difference

Data From 176 DHIA recorded Wisconsin Dairy Herds >200 cows

Mean (SD)	Sand Herds $\boldsymbol{n = 1 1 7}$	Mattress Herds $\boldsymbol{n = 5 9}$	Sand Benefit
Rolling Herd Average Milk (lb)	27,234 $(2,777)$	24,695 $(2,855)$	$+2,539$ $(1,154 \mathrm{~kg})$
Energy Corrected Milk (lb per cow)	91 (9)	84 (9)	$+7(3.2 \mathrm{~kg})$
Transition Cow Index (lb)	+263 (843)	-58 (766)	321
Somatic Cell Count (‘000/ml)	214 (71)	227 (68)	-13
Turnover Rate (\%)	36 (8)	38 (7)	-2

Sand Stall Options

- No recycle
- Pack Mat ${ }^{T M}$: saves 50% of sand (estimate $\sim 20 \mathrm{lb}(9 \mathrm{~kg})$ sand per stall per day)
- Concrete floor lagoon
- Agitate and pump

Sand Stall Options

- No recycle
- Pack Mat™ : saves 50\% of sand (estimate ~ 20 lb sand per stall per day)
- Concrete floor lagoon
- Agitate and pump
- Recycle Sand
- Settling lanes
- Mechanical separation

Settling Lanes

Sieve Analysis

Experiment 1: Shape of stall surface changes in the days after new bedding is added

The distribution of the sand changed in the days after bedding was added and levelled. The stall surface became concave, with the maximum depths at the center of the freestall.

Experiments 2 and 3: Bedding level affects lying time

Sand Conversion Options

1. Completely remove the platform and repour the curb
2. Add a bedding retainer to the rear curb and put sand over concrete or a mat

Treated Landscape Timber

Landscape Timber comes in 8 foot (2.4m) long sections 1 stainless 81/2" (22cm) concrete lag bolts beneath each loop

Fiber Glass Pipe

-3 $3^{3 / 16}$ inch O.D. 3/16" thick fiberglass pipe (comes in 30 foot lengths with beveled ends so that they slot together, cost is around $\$ 1.00$ per foot)

Other Deep Loose Bedding Options

- Manure solids
- Sawdust, shavings
- Paper products
- Straw, lime mixture (Germany)
- Peatmoss (Finland)

Resting Space Major Issues

- Insufficient resting space
- Poorly designed stall dividers causing injury
- Brisket locator obstructions

By restraint ...
 or

Indexing

Cows need to be able to put their front foot over the brisket locator when rising

Let's be clear on this....

- Research says that cows prefer stalls without brisket locators over stalls with locators 8 inches (20 cm) high (Tucker et al., 2006)
- Locators above 4 inches (10 cm) high obstruct the forward thrust of the forelimb as the cow rises
- Locators on stalls that are less than 8 feet $(2.4 \mathrm{~m})$ long don't do very much but get in the way ... especially if they are too high (mature cows are 8 feet (2.4 m)!
- Big stalls need well designed locators!

Lunge and Bob Major Issues

- Insufficient stall length for front lunge
- Divider loop design that restricts side lunge in the absence of front lunge space
- Front lunge and bob obstructions
- Diagonal lying
\square Resting area

The association between width and length
\square Resting area

32
 事事
 Lunge area

Where can the cow lunge?

- To the front
- To the side

Neck Rail Major Issues

- Neck rail located too low
- Incorrect horizontal location of the neck rail in mattress and deep loose bedded stalls
- Poor curb design

Neck rails in deep loose bedded stalls need to be ~ 6 " closer to the rear curb than in mat stalls

Topics

- Floors

Ventilation

White Line Abscess = trauma + handling

How Elite Herds Prevent Lameness Strategic Use of Rubber Flooring

Characteristic	66 Elite Herds
\% Rubber floors in pens	5
\% Rubber floors in transfer lanes	15
\% Rubber floors in holding areas	41
\% Rubber floors in parlors	68

Effect of Rubber Flooring Surfaces in Freestall Pens

Concrete Mat

All four studies show a reduction in lying time in the stall (mattress stalls)

Texture Old Floors

Topics

- Stalls

-Transition

The Wisconsin Blueprint: Transition Cows

- 30 inches (0.75 m) of bunk space 21 days before and after calving to ensure that all cows can eat at the same time
- Deep loose bedded freestalls sized to accommodate the size of the cows using them or a comfortable, dry bedded pack
- At least one stall per cow (or at least 100 square feet (10 sq m) of bedded pack per cow)
- Minimize regrouping stress within the critical period 2-7 days before calving
- A quiet place to calve, with limited disturbance from humans and other cows - to ensure as natural a birth as possible with a lowered risk for dystocia and stillbirth

Wisconsin Herd Transition Management - 2015

- 44 herds
- Herd size 894 cows
- 20 day average prefresh stay
- 62\% freestall prefresh (29\% bedded pack)
- 78\% deep loose bedding (60\% sand)
- 40" (101 cm) bunk space per cow prefresh
- 80% group maternity pen, 20% individual pens

Maternity Pen Options

1. Just-in-time calving - where cows are moved to the maternity pen (the pen in which the cow calves) within hours of birth
2. Short-stay maternity pen - where cows are moved to the maternity pen less than 2 days before they calve
3. Long-stay maternity pen - where cows are moved into the maternity pen more than 7 days before they calve

'Just-in-Time’ Calving

- Move cows from a freestall to a calving pen at the point of calving
- Commonly practiced by more than half of larger freestall herds

TCI ${ }^{\circledR}$ and Days in Calving Pen

2011 Data from 201 freestall housed herds >200 cows

- Risk of stillbirth is reduced by moving cows with waterbag or feet showing to maternity pen vs cows with only mucus showing (Carrier et al., 2006)
- Moving cows in late stage I of labor have the longest labor (mucus showing) and 50\% reduction in lying time 1 h before calving (Proudfoot et al., 2013 JDS 96:1638)
- This requires around the clock supervision of the pre-fresh group 24/7 every hour.......
- Larger, 3X milking dairy herds

A quiet private place to calve ...

Proudfoot et al., 2014. J. Dairy Sci. 97:2731-2739

TCI ${ }^{\circledR}$ and Days in Calving Pen

2011 Data from 201 freestall housed herds >200 cows

DMI (kg/d) comparing cows that

 remained vs. moved between groups Schirman et al., JDS 94:2312, 2011

Maternity Pen Options

2. Short-stay maternity pen - where cows are moved to the maternity pen less than 2 days before they calve
3. Long-stay maternity pen - where cows are moved into the maternity pen more than 7 days before they calve

Short-Stay Maternity Pen

- Cows within 2 days of calving avoid social contact and do not appear to be as affected by regrouping stress as cows 2-7 days before calving
- The success of this approach depends on the ability of workers to predict calving 2 days prior to the event
- This approach is therefore more applicable to smaller herds, typically less than ~ 250 cows, where dry cow groups are small and social stresses less than in larger herds.
- The elements critical to the success of short-stay maternity pens are:
- Excellent stockmanship and timing of calving
- A group maternity pen - to avoid prolonged isolation of individual cows

Most common approach in smaller herds

Bedded Pack Guidelines

Maternity Pen Options

> 1. Just-in-time calving - where cows are moved to the maternity nen (the nen in which the cow calves) within hours of birth
> 2. Short-stay maternity pen - where cows are moved to the maternity nen less than 2 days before they calve
3. Long-stay maternity pen - where cows are moved into the maternity pen more than 7 days before they calve

Long-Stay Maternity Pen

- With this strategy, we try to move cows into the maternity pen more than 7 days before calving.
- It is virtually impossible to predict that an an individual cow will calve in 7 days - but a group approach can be taken in herds more than ~ 350 cows
- The concept is to move a group of cows from the dry cow group to a maternity pen each week - with a group pen of sufficient capacity to accommodate a week of calving cows, and sufficient separate maternity pens to accommodate each group until they all calve, with the minimum of regrouping.

94% term calvings within 14 days

2419 calvings, stable group plus JIT system

Long-Stay Maternity Pen

- Typically, 85-95\% of cows calve over a 14-day period around 280 days carried calf (DCC). This spread should be examined in the individual herd and the appropriate DCC selected to optimize the 14-day period chosen to accommodate the majority of the cows, while ensuring that most cows spend more than 7 days in the maternity pen.

Long-Stay Maternity Pen

- 500 cow dairy freshening $1.04 * 500=520$ calvings per year
- Calvings per day @ avge = 1.5
- On average, herd will dry off $1.5^{\star} 7=10$ cows per week,
- Required capacity to freshen 150% of weekly average calving rate with space for cows to remain in pen for 14 days
$-150 \% \times 1.5$ calvings per day $\times 14$ days $=31$ cows
- We need $31 / 10=\sim 3 \times 10$ cow maternity pens to avoid regrouping
- Size at ~ 150 sq ft per cow

 with 2 isolation pens in each area

How do we size the pre-fresh/dry cow pen?

- The only pen on the farm that the cows get to decide when they leave!
- Every cow on the farm occupies this pen during the course of a year
- Have to overbuild to accommodate calving surges and distribute the cost over all of the cows in the herd

Average vs $90^{\text {th }}$ Percentile

-Heifers Cows - Total -Hef 90\%—Cows 90\%—Total 90\%

Prefresh/Dry Pen Options

- Traditional Prefresh
- Sequential Fill Prefresh
- All-in, All-out Prefresh/Maternity

Prefresh/Dry Pen Options

- Traditional Prefresh
- Sequential Fill Prefresh

Sequential Fill Prefresh

-21 day transition split into 3×7 day pens -Fill at the far end, move toward the calving area once a week
-Absorb ‘straggler’ cows that have yet to calve in pen nearest maternity area

Prefresh/Dry Pen Options

- Traditional Prefresh
- Sequential Fill Prefresh
- All-in, All-out Prefresh/Maternity

All-in, all-out Pre-fresh/Maternity

Socially-Stable Pre-fresh Groups

UW Emmons Blaine Arlington Dairy Facility

Topics

- Stalls

- Floors - Transition - Cooling and Ventilation

The Thermoneutral Zone

Effects of Heat Stress: Physiological and Behavioral

Adoption of Heat Abatement Measures

Characteristic	66 Elite Herds
Natural Ventilation	86
Fans in holding area	98
Soaking in holding area	62
Fans in pen	84
Soaking in pen	79

Too Hot to Lie Down!

Control Cow - ID 5482 [09/11/13-09/12/13]

Time

Body temperature increases $0.5^{\circ} \mathrm{C}$ per hour when heat stressed cows lie down and decreases by $0.26^{\circ} \mathrm{C}$ per hour when they stand

Heat Stress and Resting Behavior

Heat Stress and Resting Behavior

Barn Orientation and the Sun

Sun angles of a north-south oriented freestall barn for August 21, 40 degrees north latitude (Omaha-Springfield).

Barn Orientation and the Sun

Sun angles of an east-west oriented freestall barn for August 21, 40 degrees north latitude (Omaha-Springfield).

Bunching

- Caused by heat stress and fly worry
- Cows equate 'hot' with 'light' - grazing animals
- Cows seek darker areas of the barn even though it may be hotter!
- Improve heat abatement and darken the barn
- Fly control

Ventilation vs Cooling

Ventilation = "Out with the old, in with the new"

Natural Ventilation

- Thermal buoyancy (Chimney Effect)
- Warm air rises, cold air falls
- Wind
- Vector force into building openings
- Air passing over the roof creates a lifting force over the ridge

Natural Ventilation Principles

1. Open ridge

2. Open eaves
3. Adequate interior roof slope (1:4 minimum, smooth)
4. Free from wind shadows

WINTER VENTILATIOH-NO WIMD OUTSIDE

WINTER VEKTILATION-WIMD BLOWNKG

Wind Shadows

Obstructing Height (feet)	Windward building or obstruction, Length (feet)						Obstructing Height (meters)	Windward building or obstruction, Length (meters)					
	50	75	100	150	200	250		15.2	22.9	30.5	45.7	61.0	76.2
10	50	50	50	50	57	63	3.0	15.2	15.2	15.2	15.2	17.4	19.2
12	50	50	50	59	68	76	3.7	15.2	15.2	15.2	18.0	20.7	23.2
14	50	50	56	69	79	89	4.3	15.2	15.2	17.1	21.0	24.1	27.1
16	50	55	64	78	91	101	4.9	15.2	16.8	19.5	23.8	27.7	30.8
18	51	62	72	88	102	114	5.5	15.5	18.9	21.9	26.8	31.1	34.7
20	57	69	80	98	113	126	6.1	17.4	21.0	24.4	29.9	34.4	38.4
22	62	76	88	108	124	139	6.7	18.9	23.2	26.8	32.9	37.8	42.4
24	68	83	96	118	136	152	7.3	20.7	25.3	29.3	36.0	41.5	46.3
26	74	90	104	127	147	164	7.9	22.6	27.4	31.7	38.7	44.8	50.0
28	79	97	112	137	158	177	8.5	24.1	29.6	34.1	41.8	48.2	53.9
30	85	104	120	147	170	190	9.1	25.9	31.7	36.6	44.8	51.8	57.9

Wind Direction in Wisconsin

Mechanical Ventilation sonnel

Inlets need to be correctly sized and located to draw fresh air in throughout the entire barn with fast entry speeds providing 35-85 Air Changes per Hour (ACH)

Mechanical Ventilation - Cross

Low roof pitch (0.5:12) and baffles to keep air moving closer to cows

Fans located along one sidewall
Inlets located on opposite sidewall, \pm cooling pad

Tunnel	Ventilation System	Cross
Along the length of the barn	Air flow direction	Across the width of the barn
Usually 4 or 6 rows	Rows of stalls	Can be designed with 4-16 rows, with 8-12 most common
South end of a NS oriented barn or East end of an EW oriented barn	Usual fan location (to avoid fans working against prevailing winds)	East side of a NS oriented barn or North of an EW oriented barn
Usually longer than a cross	Air flow distance	Usually shorter than a tunnel
At the end wall or along the side walls at one end of the barn, providing less even air entry distribution	Inlet location	Along the entire length of the barn, providing evenly distributed air entry over a greater distance
Problems with air flow along the feed and stall alleys once the air enters the barn - path of least resistance	Air distribution	Air travels perpendicular to the alleys, with potentially better distribution of air in the cow pen
Influence air flow over very few stalls	Use of baffles to redirect the air toward the cow	Function well to distribute air at high speed over a row of stalls along the length of the barn
More restricted space to provide necessary surface area	Use of Evaporative Cooling Pads	Better designed along the inlet for even distribution
Roof pitch and openings often suitable for natural ventilation in winter/spring/fall	Natural ventilation option	Wide-body barns usually have low roof pitch and side wall location of fans precludes use as an inlet
Potential for natural ventilation and improved air flow with lower risk for freezing	Winter ventilation	Air distribution problematic at low ACH - freezing alleys along inlet side of barn common
Largely independent of barn but transfer lane must be managed as a potential inlet	Location of the milking center	Problematic as frequently located at the air discharge side of the barn. Transfer lane may also serve as an inlet.
Optional natural ventilation in an emergency	Energy dependence	24/7 requiring back-up generator and emergency plan
Compatible	Compatibility with organic bedding	Air speeds may create problems with moving bedding - dust and air hygiene problems
Poorer control of light intensity in barns with a natural ventilation option	Photoperiod	Potential for better control of light intensity
Generally barns are traditional width, but they may be spaced closer together vs naturally ventilated barns	Footprint	Potential to increase \#cows housed in available space in wide-bodies barns

Can we create a hybrid barn that naturally ventilates when the wind blows in the winter, and mechanically ventilates when we need an 'assist' in the summer?

How Cows Cool

- Conduction
- Convection
- Radiation
- Evaporation

- When ambient temperature approaches body temperature, the only viable route of heat loss is evaporation - sweating and thermal panting

Methods of Cooling

Cool the Cow

- Air
- Soak
- Air and Soak

Cool the Air

- Misting
- Evaporative Pads
- (Air Conditioning)

Air Movement and Soaking

Air velocity \& wet skin temperature

Berman, JDS 91:4571, 2008

Fan discharge \& throw distance

Fan Diameter	0.9 meters	1.2 meters
	5191 Liters/sec	9439 Liters/sec
Distance from Fan, m	Air Speed, m/s	Air Speed, m/s
1.5	4.2	7.7
3	1.3	2.3
4.6	0.64	1.2
6.1	0.39	0.71
7.6	0.27	0.48
9.1	0.19	0.36
10.7	0.15	0.27
12.1	0.11	0.22
13.7	0.10	0.18
15.2	0.08	0.15
Fan Diameter	3 ft	4 ft
	11,000 cfm	20,000 cfm
Distance from Fan, ft	Air Speed, ft/min	Air Speed, ft/min
5	834	1516
10	253	461
15	126	230
20	77	140
25	53	95
30	38	70
35	29	54
40	23	43
45	19	35
50	16	29

- With 3-ft fan, optimal air speed of 200400 ft / minute is 7-11 feet from fan
- With 4-ft fan, optimal zone is 10-15 ft from fan
- Optimal speeds delivered over ~50-75 square feet of area

SMART targeted soaking systems - parlor exit lanes, soaker pens?

Topics

- Stalls

-Floors

- Transition
- Cooling and

Ventilation

Identify the rate limiting step

AMS: A small but rapidly growing segment of our industry

AMS Challenges in North America (529 herds)

Numeric Variables	Mean	Standard Deviation
Cows_per_Robot	50.5	9.54
Average_DIM	178	27.87
Kg_Concentrate_per_100kg_Milk	15.86	5.38
Rest_Feed_\%	7.72	7.38
Number_of_Refusals (per cow per day)	1.86	1.38
Number_of_Failures (per robot per day)	5.49	3.46
Production_per_Cow_per_Day kg	32	4.91
Production_per_Robot_per_Day kg	1627	397
Number_of_Milkings (per cow per day)	2.91	0.36
Milk_Speed (kg per minutes)	2.59	0.31
Average_Boxtime (minutes)	6.84	0.70
Number of Connection Attempts (per cow per day)	1.41	0.23

Temblay et al, submitted

AMS: Poor Decisions

- Slatted floors
- Mattress beds
- 3-row pens

The Dairyland Initiative is Sponsored by:

www.thedairylandinitiative.vetmed.wisc.edu

Thank you!

